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Foreword

It is my great pleasure to present another of the Wright 
Flyer Papers series. In this series, the Air Command and 
Staff College (ACSC) recognizes and publishes our best 
student research projects from the prior academic year. 
The ACSC research program encourages our students to 
move beyond the school’s core curriculum in their own 
professional development and in “advancing air and space 
power.” The series title reflects our desire to perpetuate the 
pioneering spirit embodied in earlier generations of Airmen. 
Projects selected for publication combine solid research, 
innovative thought, and lucid presentation in exploring war 
at the operational level. With this broad perspective, the 
Wright Flyer Papers engage an eclectic range of doctrinal, 
technological, organizational, and operational questions. 
Some of these studies provide new solutions to familiar 
problems. Others encourage us to leave the familiar behind 
in pursuing new possibilities. By making these research 
studies available in the Wright Flyer Papers, ACSC hopes 
to encourage critical examination of the findings and to 
stimulate further research in these areas.

JIMMIE C. JACKSON, JR.
Brigadier General, USAF
Commandant





Abstract

Lack  of investment in future agile combat-support 
technologies could lead to a strategic surprise that diverts 
military attention and resources from critical air, space, and 
cyber   operations. Looking to the national security environment 
in 2030, this research explores one technology—the microbial 
fuel cell (MFC)—that gives life to self-contained facilities 
decoupled from vulnerable supply lines and infrastructure 
networks. MFCs can dispose of waste (sewage, food scraps, 
gray water, etc.) while producing clean water (up to 70 percent 
of required volumes) and power (up to 600 watts per person). 
Using relevance tree methodology, the research concludes that 
USAF research and development investment alone will not 
bring MFCs to fruition. A successful strategy for MFCs will be 
collaborative, addressing not only the technological barriers but 
also the key social, industrial, and political hurdles to enabling 
this capability. Fully developed, this technology could save up 
to $50 million a day for a 150,000-person deployment. Beyond 
cost and mobility advantages, MFCs could enable homeland 
security against the terrorist threat and provide power, water, 
and sanitary waste disposal after wars or natural disasters. 
They could also bolster the legitimacy of stressed governments, 
offer security against chronic water and energy shortages, 
and function in isolated areas as well as urban centers. In 
addition to military uses, MFCs could become a diplomatic 
and economic tool to pursue a better state of peace by building 
a foundation for democratic and economic development.
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Preface

Throughout my career in the United States Air Force, I 
have had the opportunity to see engineering technologies 
from two very different angles. I began my career as a 
research and development mechanical engineer at the Air 
Force Research Laboratory. I worked with technologies 
for the 30-year time horizon daily, which formed my ideas 
about strategic thinking for technology. Five years into my 
career, I became an Air Force civil engineer, responsible 
for operations, maintenance, and repair of facilities and 
infrastructure as well as future construction. Though 
innovators populate both career fields, Air Force civil 
engineers are generally more concerned about today’s crises 
than future capabilities. The nature of our business forms 
us into loyal servants who always find innovative ways to 
“git ’r done.” Furthermore, our operational pace leaves little 
opportunity to pontificate on capabilities for the 30-year 
horizon. This creates strategic vulnerabilities because we 
build our facilities and infrastructure to last, and they must 
enable air, space, and cyber power for nearly a century. I 
am thankful that I had an opportunity to begin to reconcile 
the differences in engineering thinking across these two 
career fields and merge the best characteristics into an idea 
that could contribute to national security.

I would like to thank Dr. John Ackerman and Dr. Glenn 
Johnson for their advice, enthusiastic support, and genuine 
interest in my research. Thanks also go to the Blue Horizons 
staff for providing a framework from which I could begin 
to shape an articulate argument. Col Rich Fryer, Maj Milt 
Addison, and the Air Force Civil Engineer Support Agency 
team also provided fantastic support for my research. 
Finally, I would like to thank God, the Ultimate Provider, 
who has blessed me with my dear husband. Paul, I thank 
you for your love and support during this year apart, but 
especially for your patience in allowing me to process aloud 
many random thoughts that eventually made their way 
into this product.
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Introduction

The year is 2030. At a major US expeditionary base the 
power grid has failed, and limited fuel is available for pur-
chase. Water reservoirs are nearly empty, and now fear 
is spreading that militants have contaminated available 
water resources. Health concerns take center stage as the 
sewage treatment plant and waste disposal systems stop 
working. Thankfully, the USAF has a powerful weapon 
that can save the day. After 20 years of research and de-
velopment, the microbial fuel cell (MFC) gives expedition-
ary and home-station commanders a capability to produce 
clean energy and clean water while using only wastewater 
and other organic wastes as fuel.

Should the USAF bolster MFC research to give life to 
self-contained facilities decoupled from the infrastructure 
network? The USAF should invest in MFC research because 
this technology gives life to sustainable facilities decoupled 
from the infrastructure network, a key capability for na-
tional security in the 2030 environment. MFC capabilities, 
however, will not find success via research and develop-
ment (R&D) investment alone. The USAF must collaborate 
within the Department of Defense (DOD) and beyond while 
taking a holistic systems approach to bring MFC capability 
to fruition. A successful strategy for MFCs will address not 
only the technological barriers but also the key social, in-
dustrial, and political hurdles that will bring about signifi-
cant monetary and resource savings for the USAF. 

The research methodology applied to capture all of these 
potential hurdles in MFC technology is the relevance tree. 
According to a report from the Futures Group International, 
this analytic technique ensures comprehensive explora-
tion of a problem by breaking the system into increasingly 
smaller subsystems. The aim is to break the problem into 
enough detail that the issues can be resolved by exploring 
potential options at key nodes.�

Relevance tree methodology is a natural fit to explore future 
development and use of MFC technology. It allows consider-
ation of a larger context than mere technical feasibility. Books 
such as Steven Schnaars’s Megamistakes: Forecasting and the 
Myth of Rapid Technological Change and William Ascher’s Fore-
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casting: An Appraisal for Policy-Makers and Planners make it 
clear that technological feasibility alone plays only a small part 
in the adoption of new technologies; social, industrial, 
political, and economic factors often have the decisive role.

For a current example of why this systems approach is 
important to emerging technology analysis, look no further 
than biofuels. The European Union (EU) did not analyze 
biofuels using a systems approach prior to policy decisions. 
The EU issued policy “to replace �0 percent of transport 
fuel with biofuels . . . by 2020,” but this “green” idea fur-
thered global warming, deforestation, and food and water 
shortages.2 If a relevance tree methodology had been applied 
to biofuels, the EU might have avoided a costly and embar-
rassing policy decision.

The relevance tree research methodology drives the 
structure of this paper. First, the relevancy of MFCs is es-
tablished for airpower, national security, the 2030 environ-
ment, and applications outside primary DOD interest. Af-
ter relevancy is established, the concept of self-contained 
facilities decoupled from the infrastructure network is 
explored. Since MFCs are a key capability that could en-
able self-contained facilities, the concept is explained from 
a technological perspective and then analyzed along with 
other relevant issues surrounding the technology using the 
relevance tree. Once the relevance tree is defined, key-node 
analysis in the technological, social, industrial, and politi-
cal realms facilitates conclusions about the feasibility of 
a strategic plan to enable this capability to enhance US 
national security by the year 2030.

Who Cares?

The problem that MFCs address is defined by looking 
at their relevancy. Relevancy is first described in terms of 
air, space, and cyber power. Next, the research looks at the 
broader relevancy to national security, the 2030 environ-
ment, and beyond the DOD. 

Relevancy to Air, Space, and Cyber Power

Facilities have evolved from mere shelters to force-projection 
platforms and command centers (such as the AN/USQ-�63 
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Falconer Air and Space Operations Center weapon system) 
and will be critical to air, space, and cyber power as long as 
humans are involved with force projection.3 What demands 
will be placed on future facilities as we enter the cyberage 
and beyond? Since current facilities must last at least 67 
years, USAF leaders must define a strategic capabilities plan 
for future facilities that approaches the facility life cycle but 
is flexible enough to meet intermediate requirements.4

One capability the USAF will require in future facilities 
is the ability to operate apart from the infrastructure net-
work and line of communications (LOC) in a clean and ef-
ficient manner, both in an expeditionary environment and 
within the United States. Today’s facilities tie to a power 
grid, a water distribution system, and a wastewater dis-
posal network, creating key nodes of vulnerability in both 
the physical and cyber realms.5 Facility locations are limited 
to areas with developed infrastructure that exists or that 
must be built. What if a single technology could eliminate 
infrastructure dependency for all three of these services? 
MFCs hold this promise.

The MFC promise for the USAF extends beyond infra-
structure decoupling both abroad and at home. For expedi-
tionary facilities, airlift requirements are reduced for light, 
transportable, reusable, maneuverable cities that do not re-
quire heavy equipment to build, infrastructure to support, 
or fuels to sustain. Today’s mobile electric power (MEP), 
for example, “requires . . . up to 4,000 gallons per day of 
fuel sustainment, placing a severe burden on an already 
stressed air fleet.”6 MFC technology’s potential to reduce 
airlift requirements and build operating bases in any en-
vironment relates to the strategic principle of agility, as 
defined by the National Military Strategy (NMS).7 Addition-
ally, fuel moving through ground LOCs creates exploitable 
vulnerabilities to equipment, supplies, and personnel that 
would be mitigated if facilities required less or no fuel and 
water to operate. For facilities in a homeland defense pos-
ture (which all USAF facilities must expect), decentralized 
utilities shift risks away from vulnerable physical and cyber 
infrastructure nodes, eliminating critical targets for the 
enemy.8 This is important because the first national mili-
tary objective defined in the NMS is to protect the United 
States, and the National Strategy for Combating Terrorism 
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calls for “defense of potential targets of attack” to include 
critical infrastructure such as energy and water.9 Further-
more, the synergy of using the same MFC technology at 
home and abroad will reduce training requirements for 
craftsmen while increasing their competence.

As a final note on MFC relevancy to the USAF, it is im-
portant to mention that the author narrowed the scope of 
this research to facility applications, but MFC significance 
is not limited to facilities alone. MFCs could be used in 
any application that requires clean energy, clean water, or 
organic waste disposal. Some obvious benefits beyond fa-
cilities include power for micro air vehicles and space as-
sets; clean water, power, and waste treatment for aircraft 
latrines; power for ground vehicles; and clean, low-heat-
signature generators for flight-line use.�0

Relevancy to National Security beyond Air, Space,  
and Cyber Power

While the link between MFCs and air, space, and cyber 
power is clear, it is even more important to understand 
the broader link to US national security. This link will be 
discussed under four main topics: (�) reducing natural re-
source consumption, (2) eliminating spark points for world 
conflicts, (3) prioritizing stability, security, transition, and 
reconstruction (SSTR) operations, and (4) accomplishing 
tasks outlined in the National Security Strategy (NSS). 

Reducing energy consumption and natural resource de-
pendency is a national security issue. The Whole Build-
ing Design Guide Sustainable Committee notes that “with 
America’s supply of fossil fuel dwindling [and] concerns 
for energy supply security increasing . . . it is essential to 
find ways to reduce load, increase efficiency, and utilize 
renewable fuel resources in federal facilities.”�� USAF lieu-
tenant colonel John Amidon agrees: “The current world 
energy situation poses a national threat unparalleled in 
225 years . . . [and] meeting this dilemma with a technical 
solution plays on America’s greatest strengths, those of the 
inventor and the innovator.”�2 The president codified this 
concern about natural resource dependency for both en-
ergy and water in Executive Order �3423, which requires 
agencies to reduce energy use by 3 percent a year (or 30 
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percent total) by 20�5 and to reduce water consumption 
by 2 percent a year (or 20 percent total) by 20�5.�3 The 
president launched goals that are even more aggressive 
in December 2007 by signing the Energy Independence 
and Security Act of 2007.�4 Considering that buildings in 
the United States consume 68 percent of electricity, facili-
ties are a logical target to reduce natural resource depen-
dency.�5 Former secretary of the Air Force Michael Wynn 
agrees with these goals: “The reliance on imported oil 
continues to threaten the economic, financial and physi-
cal security of the nation while the use of domestic fossil 
fuels contributes to nationwide pollution problems. The 
Air Force believes that development of renewable energy 
sources for facility energy is one important element of our 
comprehensive strategy.”�6 The DOD also understands the 
link of energy to national security and to the military in-
strument of power. The Defense Science Board articulated 
this in a report linking fuel efficiency to six principles of 
war: surprise, mass, efficiency, maneuver, security, and 
simplicity.�7 Furthermore, a 2007 poll conducted for the 
Yale Center for Environmental Law and Policy shows that 
most Americans, 63 percent, also agree that energy is a 
national security issue by confirming that energy issues 
threaten the United States more than terrorists.�8 In sum-
mary, natural resource consumption is a national security 
concern acknowledged by the president, confirmed by the 
USAF, and linked to the principles of war. Facilities are a 
logical starting point for reducing resource consumption.

While the focus of this research is on US national se-
curity, technologies that reduce water and energy depen-
dency could contribute to a reduction in armed conflicts 
throughout the world—conflicts that the United States of-
ten attempts to resolve. Since water and energy resources 
spark conflicts, alternative solutions to obtaining these 
natural resources would prevent conflicts.�9 Three exam-
ples come to mind. First, in the Future Capabilities Game 
2007 (FG07), the scenario’s conflict concerned natural re-
sources. If the natural resource were available through 
MFCs or other technologies, could the conflict have been 
prevented? The second example concerns the peaceful 
split of the Czech Republic and Slovakia in �993. Could 
the “velvet divorce” that resulted in peace and good gover-
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nance have occurred if resources such as oil or water were 
at stake?20 The final example is the Jordan River Basin, 
which includes Israel, Jordan, Lebanon, Syria, and the 
West Bank. Since �948, �8 “extensive war acts causing 
deaths, dislocation, or high strategic costs” and dozens 
more hostile acts have occurred in this region.2� Would 
these conflicts be less likely to start, or be more likely can-
didates for peaceful resolution, if water resources were 
available through a technological breakthrough? Critics 
will find that natural resource availability will not be a 
panacea for conflicts that also have deeper cultural roots. 
These examples establish the premise that water and 
energy resource availability, enabled by MFCs or other 
technologies, could contribute to future world stability by 
offering diplomats a tool to pursue a better state of peace.

The third link of MFCs to national security is in the 
growing priority of SSTR operations. Today such missions 
are not in vogue with the USAF’s institutional infatua-
tion with technology.22 For the future, however, MFCs will 
provide capability useful in all four quadrants of military 
challenges shown in the 2006 Quadrennial Defense Review 
(QDR)—irregular, catastrophic, disruptive, and traditional 
challenges.23 Additionally, MFCs will offer capabilities that 
are essential to all six operation plan phases as described 
in Joint Publication (JP) 3-0, Joint Operations.24 The broad 
applicability of MFC capability allows this technology to fill 
a niche outside the “seize and dominate” phases and tradi-
tional security challenges where USAF technological inno-
vation attention is typically focused.

MFC technology moves the USAF toward carrying out  DOD 
Directive 3000.05, Military Support, that states, “Stability 
operations are a core US military mission. . . . They shall 
be given priority comparable to combat operations.”25 Since 
stability is key to transferring power to civil authorities, and 
since facility and infrastructure construction are a large 
component of stability, the United States could use MFC 
technology to expedite this transition in areas with damaged 
or absent infrastructure. New USAF irregular warfare doc-
trine acknowledges this mission by a call to civil engineers 
to implement it.26 Another stabilization role the US military 
performs is humanitarian relief. “Humanitarian relief has 
long been recognized as a mission of the American armed 
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forces,” and the massive response to the “most destructive 
tsunami ever recorded” in Indonesia in 2004 is an example 
of the need for a capability to produce clean drinking water 
in the absence of operational infrastructure.27 

Whether the military likes to acknowledge this aspect 
of its mission or not, SSTR operations are a core mission. 
While assigned to Iraq, Army captain John Prior captured 
the sentiment that is prevalent in today’s writing on SSTR 
and counterinsurgency efforts. “ ‘Infrastructure is the key 
now,’ Prior said more than once. ‘If these people have elec-
tricity, water, food, the basics of life, they’re less likely to 
attack.’ Sewage, Prior realized, was the front line of nation-
building.”28 The infrastructure provided by US military 
teams paves the way for winning the hearts and minds of the 
indigenous population by meeting its basic needs, which in 
turn adds legitimacy to stressed governments after war or 
disaster. In short, MFC technology adds capability across 
all phases of war and across all types of challenges.

Using the military instrument of power (IOP) for nation 
building is a possibility based on DOD Directive 3000.05, 
but the NSS links infrastructure development efforts to two 
essential strategic tasks that leverage the diplomatic and 
economic IOPs as well. The two essential tasks outlined in 
the NSS that relate to MFC technology are (�) to “ignite a 
new era of global economic growth through free markets 
and free trade,” which includes “secure, clean energy de-
velopment,” and (2) to “expand the circle of development by 
opening societies and building the infrastructure of democ-
racy.”29 The US Department of State (DOS) could support 
both objectives by helping developing nations become stable 
democracies using technology such as MFCs that enable 
modular, cost-effective, resource-savvy, low-maintenance, 
infrastructure-free facilities, especially in remote and im-
poverished areas. Furthermore, using MFC technology in 
impoverished areas provides clean water, combats disease, 
and helps states integrate impoverished nations lacking 
infrastructure into the global economy.30 Nongovernmental 
organizations (NGO) could use MFCs in a similar manner 
to further these NSS objectives, but they could also use 
the technology as a baseline for establishing or supporting 
refugee camps or humanitarian relief efforts. The DOS and 
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NGOs could use MFC technologies to accomplish essential 
strategic tasks specified in the NSS.

To recap, MFCs could enhance national security beyond 
air, space, and cyber power in four ways: (�) reducing nat-
ural resource consumption, (2) eliminating world conflict 
spark points, (3) prioritizing SSTR operations, and (4) ac-
complishing essential tasks outlined in the NSS.

Relevancy to the 2030 Environment

The relevancy of MFC technology for air, space, and cyber 
power and the larger national security context in today’s 
environment is evident, but that relevancy will grow even 
more as we approach the year 2030. MFCs will be a key 
defense capability regardless of which future threat domi-
nates in 2030. Four main threat scenarios could depict the 
2030 environment, and each of these scenarios needs MFC 
technology to enable national security. If the United States 
faces a conventional, major-theater enemy in 2030, MFCs 
will be needed to enable expeditionary and homeland fa-
cilities from which to project traditional air, space, and cy-
ber power. If the terrorist threat to the homeland dominates 
in 2030, MFCs will be needed to eliminate key nodes of 
vulnerability in the homeland infrastructure (such as the 
power-grid, water, and wastewater systems). If counter-
insurgencies, small wars, and humanitarian crises (such as 
those faced over the past 50 years in Vietnam, Iraq, and 
Afghanistan) characterize the next century, MFCs will be 
needed to provide critical infrastructure to “win hearts and 
minds” and legitimize nascent governments. If energy and 
water shortages or environmental concerns are the biggest 
national security concern in 2030, MFCs will be needed to 
provide green power and clean water.3� No matter which 
scenario strategic planners assume is most important for 
2030, MFCs could reduce the probability of strategic sur-
prise if R&D investment begins now.32

The argument that follows looks more closely at the 
fourth scenario, energy and water resource shortages. 
Steven Schnaars, a marketing professor who specializes 
in future technologies, observes that “forecasters are im-
prisoned by their times.”33 Humans tend to look at today’s 
crisis and project it into the future. Conventional threats; 
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terrorism; and small wars, insurgencies, and humanitarian 
crises are today’s discernable threats covered extensively 
in the literature and the Air Command and Staff College 
curriculum. Energy and water resource shortages are to-
morrow’s strategic threats that are often overlooked, creat-
ing strategic risk. Therefore, this discussion focuses on this 
fourth scenario.

Energy will continue to be a concern in 2030. In 2007 
the United States Department of Energy (DOE) forecast 
international power demand to double by 2030.34 Today’s 
energy crisis is well recognized and built into future na-
tional security strategy.35 Projects are under way to reduce 
consumption and to transition to green power sources. The 
projected crisis for power, then, is not likely to be quantity 
and sources but availability.

Today’s facilities depend on a power grid. Power grids 
have both physical vulnerabilities (enemy actions, natu-
ral disasters, and demand saturation) and cyber vulner-
abilities (control software). Distributing the network into 
smaller pieces reduces risk, with an ultimate goal of indi-
vidual self-contained facilities with collocated production 
and consumption. Besides reducing risk, after initial capi-
tal investment, power costs would drop since 30 percent of 
most electric bills is for transmission costs, and �0 percent 
of electricity is lost in transmission.36 Self-contained facili-
ties would be more likely to survive physical or cyber terror 
attacks as well as natural disasters.37 Consumers could 
also reduce vulnerability to brownouts that threaten pro-
ductivity and the economy.38 Self-contained facilities ad-
dress the nonavailability threat. 

Water availability, on the other hand, will be a bigger natu-
ral resource crisis in 2030 than decision makers grasp today. 
Planning failures for this emerging shortage will result in a 
strategic surprise, forcing crisis action or emergency re-
sponses that will divert attention from the USAF’s main goals.39 
A potential water shortage in 2030 is well documented, and 
the USAF must begin to prepare for it. Water shortage fore-
casts are available, for those willing to heed them, in future 
scenarios, futurists’ predictions, and mainstream media.

Four credible future scenario projects highlight a future 
water shortage. First, the United Nations Millennium Project 
scenarios lend credibility to the prediction of a global water 
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shortage in the 2030 time frame. In its product, 2007 State 
of the Future, “providing sufficient clean water for everyone, 
without conflict” is one of the “�5 Global Challenges” that 
needs to be addressed “to improve prospects for human-
ity.”40 These futurists observe that today “more than � billion 
people do not have access to safe drinking water” and that 
“by 2025, �.8 billion people could be living in water-scarce 
areas desperate enough for mass migrations, and another 3 
billion could live in water-stressed areas.”4� They also note 
that “80% of diseases in the developing world are water-
related. Many are the result of poor management of human 
excreta. About 2.6 billion people lack adequate sanitation.”42 
MFCs would address the water and sanitation challenges 
forecast by the United Nations Millennium Project.

Second, the Nobel Prize–winning Intergovernmental 
Panel on Climate Change predicts that by 2020 as many as 
250 million Africans could experience water stress.43 Third, 
Air Force planners looking at scenarios for 2025 also expect 
future water shortages. The King Khan scenario forecasts 
that “clean drinking water [will be] scarce and competition 
over water rights [will] become a source of conflict in Africa 
and Southwest Asia.”44 Finally, FG07 also reflects this same 
natural resource shortage. Future water shortages consis-
tently appear in strategic planning scenarios.

Individual futurists also agree about the scarcity of fu-
ture water. Peter von Stackelberg highlights the need for 
future water technology by surmising that “water is be-
coming increasingly scarce. . . . By 2025, about 3.4 billion 
people will live in regions that are defined by the UN as 
water-scarce.”45 The Futurist’s May 2008 magazine cover 
claims that “global demand for water has tripled in the 
past half century.” The article’s author expects this trend 
to continue and projects that since 70 percent of water 
consumption is for agriculture, water shortages will also 
lead to food shortages.46 Professional futurists expect to 
see a water crisis by 2030.

Even popular media, which are generally not future-
focused, are reporting on the likelihood of water scarcity 
in 2030. Starting in 2009, the government estimates that 
the demand for water will outstrip supply in La Paz-El Alto, 
Peru.47 Even more surprising, the predicted water short-
age in 2030 is not limited to places outside of the United 
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States. The main water source for Phoenix and Las Vegas, 
Lake Meade, “has a 50 percent chance of becoming un-
usable by 202�.”48 Both cities host military bases threatened 
by the absence of water. The threat of a water shortage is 
on the horizon, not just in the Middle East but also in the 
Western Hemisphere.

Natural resources will be scarce in 2030, and networked 
infrastructure will carry unnecessary risks. Scenario plan-
ners, futurists, and popular media have issued the warn-
ings—water and energy shortages will characterize the 
world, including the United States, in 2030. Sustainable 
technologies that minimize natural resource losses while 
producing beneficial by-products will be necessary to proj-
ect air, space, and cyberspace power, regardless of the 
most likely threat.

Relevancy beyond the Department of Defense

While this research focuses on the applicability of MFCs to 
national security through the military IOP, MFCs also enable 
the diplomatic and economic IOPs. Understanding the larger 
impact of this technology allows the USAF to identify R&D part-
ners. This study also paints a picture of how important MFCs 
could become for 2030. Figure A.� shows application and 
benefit areas, and table A.� details a starting point for estab-
lishing collaboration partners.

Understanding Microbial Fuel Cell Technology

With the relevancy of the research established, this sec-
tion explains MFC technology. First, the research explores 
the self-contained facilities concept and how MFCs enable 
it. Next, an overview of MFC components and their inter-
action provides a foundation for further analysis. Additionally, 
a short section addresses what MFCs are not. Finally, with 
technical details in hand, the last section summarizes the 
technology’s maturity. 

Self-Contained Facilities Concept

The genesis of this research is the self-contained facilities 
concept. A self-contained facility moves services and connec-
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tions from outside infrastructure into the footprint of the 
building. Examples of infrastructure that facilities connect 
to include electricity, natural gas, water, wastewater, solid 
sanitary waste disposal, and roads. Ideally, self-contained fa-
cilities would also include self-maintenance, or at least self-
monitoring, capabilities such as remotely adjustable climate 
controls, self-repairing wall and roof materials, and drain-
clearing capabilities. Furthermore, self-contained facilities 
should be light, reconfigurable, reusable, and maneuverable 
cities that do not require heavy equipment such as bulldozers 
and well-drilling rigs to build or sustain. These facilities leave 
no footprint when moved.

Since the topic of self-contained facilities is broad, this re-
search focuses on the one technology that offers the most ca-
pability toward self-contained facilities—MFCs. MFCs are the 
most promising technology to explore for the self-contained 
facilities concept because they fold in several infrastructure 
and LOC dependencies—power, water, wastewater treatment, 
and waste disposal. For 2030’s threats, self-contained facili-
ties enabled by MFCs can reduce infrastructure and LOC vul-
nerabilities for facilities at home and abroad. 

Microbial Fuel Cell Technology Overview

An overview of MFC technology is the starting point for ex-
ploring what MFCs can provide and the best way to move 
toward that goal. A brief study of figure � offers the best way 
to gain a basic understanding of MFC technology. Following 
the pictorial overview is a summary of how MFCs work as well 
as a description of the salient technology components for a 
more in-depth understanding of MFCs.

One kind of biological fuel cell, the MFC, uses living mi-
crobes as a catalyst for an electrochemical reaction that can 
convert waste to power and water.49 Microbes metabolize waste 
products in a process that frees electrons. This idea is not 
new. Wastewater treatment plants use microbes to degrade 
organic matter. The new twist is capturing released electrons 
as power. “Normally the electrons power . . . the bacterial cells. 
However, by depriving the bacteria of oxygen . . . the electrons 
can be wrested . . . and used to power a circuit.”50 Wastewater 
is cleaned, as it is in wastewater treatment plants today, and 
the by-products of the reaction are clean water and power. 
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With this understanding, the stage is set to discuss the pri-
mary components.5�

Fuel. Fuel is the substrate in which the microbes act. 
Examples of fuels for MFCs include wastewater such as 
gray water, black water, and storm water; kitchen scraps; 
industrial waste streams; agricultural waste streams; sugars 
such as glucose, fructose, lactose, and mamose; algae; or 
any other kind of carbon-rich waste product such as wood, 
paper, or plastic.52 The ideal mixture of the substrate is a 
key investigation area.53

Electrodes. Microbial fuel cells have an anode and a 
cathode. Flow of electrons between these two electrodes 
through an external resistance yields power. Electrode ma-
terials dictate how well electron transport can occur.54 Elec-
trode surface area also governs waste processing speed and 
power output density.55 

Catalyst. Catalysts start the electrochemical reaction. 
They are necessary at both electrodes. A traditional fuel cell 
uses platinum as the catalyst, but in MFCs “bacteria on the 
anode . . . can act as the catalyst instead.”56 The catalyst 
governs the reaction speed at both electrodes and therefore 
becomes a variable that dictates the speed of power and 
clean water production.57 A robust mixture of microbes, 
such as Geobacter and Shewanella, in the anode chamber 
catalyzes the reaction and allows for fuel flexibility.58 Sev-
eral microbiologists are studying the genetic engineering 
involved with optimizing microbes for MFCs.59

Fig. 1. Microbial fuel cell technology overview
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Membrane. A membrane separates the two electrodes 
and allows protons to pass from the anode to the cathode. 
It also allows anions to pass from the cathode to the anode. 
This proton exchange creates a potential across the two 
electrodes that pulls electrons from the anode to the cath-
ode, thus generating electricity. The protons then combine 
with the oxygen at the cathode to produce water. Proper de-
sign of the membrane is important because this exchange 
controls the potential available across the electrodes (which 
equates to power) and the rate at which the reactions can 
occur at both electrodes.60 Membranes are a current re-
search topic, and recent publications suggest that Nafion 
membranes should be replaced with a nanoporous filter or 
“fast proton conducting ceramic membranes” to optimize 
power output and reliability.6�

Electron Transport. Mediators help move electrons in 
the anodic chamber to the electrode so that they can be cap-
tured to produce electricity. Many MFC publications report 
supplementing the solution around the anode with media-
tors that are toxic chemicals, such as methylene blue.62 Mi-
crobes, however, synthesize and excrete mediators as they 
“breathe.”63 This natural method of transporting electrons to 
the anode, often referred to as a mediatorless MFC, allows 
electrons to be passed to the anode via direct contact be-
tween the microbe and the electrode surface. Two examples 
of mediatorless electron transfer appear in the MFC litera-
ture—nanowires and biofilms. Nanowires are hairlike ap-
pendages that bacteria use to move electrons to the electrode 
surface.64 Biofilms enable electron transport by orienting cell 
surfaces so that the electron-transporting proteins are a cer-
tain distance from the electrode, allowing electron hopping.65 
Biofilms coat the anode and grow on a carbon-based fiber.66

What Microbial Fuel Cells Are Not

With these main components defined, it is now pos-
sible to refine the definition of MFCs by understanding 
what MFC technology is not. Since many competing and 
complementary alternative energy projects are in the spot-
light, it is important to understand what differentiates 
these technologies. Some technologies that should not be 
confused with MFCs are biofuels and biomass, hydrogen 
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fuel cells, protein- or enzyme-based fuel cells, solar power, 
wind power, and desalination plants. A brief explanation of 
these technologies is included in appendix C. Future MFC 
applications will likely be coupled with some of these com-
plementary energy and water technologies to build fully 
self-contained facilities.

Microbial electrolysis cells (MEC), on the other hand, are 
a kind of MFC, but they are not the focus of this research. 
MECs use an additional small voltage input (which could 
be provided by another MFC) to drive hydrogen production 
at the cathode. This hydrogen then drives a traditional fuel 
cell. MECs are more complex than the basic MFC idea ex-
plored here. Dr. Bruce Logan’s group at Pennsylvania State 
University is researching this conceptualization.67 

Technology Maturity

With a basic understanding of the concept of MFCs, how 
mature is the technology? Using MFCs on a large scale to 
dispose of wastewater, to clean water, and to generate elec-
tricity is a futuristic idea. Dr. Glenn Johnson, an MFC ex-
pert at the Air Force Research Laboratory, assessed MFC 
technology readiness level (TRL) as “two,” which means that 
the basic concept or idea has just been formed.68 In Dr. 
Johnson’s assessment, in �0 years leaders will talk about 
MFCs as frequently as they discuss ethanol today.69 Derek 
Lovley, an MFC researcher at the University of Massachu-
setts–Amherst, put it this way: “One way to think of this 
technology is that it is currently at the state of development 
that solar power was 20 to 30 years ago—the principle has 
been shown, but there is a lot of work to do before this 
is widely used.”70 MFC technology is still in its formative 
stages—the perfect time for the USAF to envision future 
uses for this emerging technology and shape the research 
to meet that vision.

Microbial Fuel Cell Relevance Tree: 
A Systems Analysis Framework

With a basic understanding of MFC relevancy and tech-
nology, analysis is now appropriate. MFCs could make a sig-
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nificant contribution toward self-contained facilities, but how 
could they contribute, and what must be addressed to achieve 
this goal? To answer these questions, this research used a 
relevance tree systems analysis. The relevance tree was first de-
fined and then analyzed at key nodes. From this process, some 
capabilities and limitations emerged. Finally, a brief cost analy-
sis showed the practical feasibility of implementing MFCs.

Defining the Microbial Fuel Cell Relevance Tree

A relevance tree breaks the problem into successively 
smaller parts so that individual issues can be identified and 
addressed. A graphical representation of this research is 
presented in appendix B and shows what it will take to move 
MFC technology from concept to capability. 

Key-Node Analysis

The MFC relevance tree is a detailed, systematic sketch 
that captures the salient concerns surrounding MFC R&D 
and implementation. Because the tree has over �00 branches, 
this research cannot detail concerns at each node. The key-
node analysis, therefore, seeks to highlight the most im-
portant nodes that leaders must address to advance MFC 
technology. This analysis looks at four tree branches: tech-
nological, social, industrial, and political challenges.

Key Technological Nodes. The first of these branches 
has three main categories (or nodes): basic science, engi-
neering, and military suitability. This analysis highlights the 
biggest challenges in each of these areas.

Basic science challenges exist for all the major MFC 
components: fuels, electrodes, catalysts, membranes, and 
electron transport. Fuel mixtures and sources must be de-
termined.7� Electrode size, shape, and materials must be 
optimized.72 Catalytic microbes must be better understood 
to determine power output limits and optimal mixtures for 
fuel flexibility.73 Nanotechnology breakthroughs will enable 
high-integrity membranes that transport protons quickly 
without fouling.74 For electron transport, hairlike struc-
tures on the microbe surface that form nanowires must be 
investigated.75 Finally, microbiologists must advance bio-
films to learn the mixtures, inoculation methods, and the 
best materials to grow microbial catalysts.76
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Beyond these challenges, engineering issues must be iden-
tified early and addressed in parallel with the basic science. 
Configuration issues such as modularity and stacking, energy 
storage, and coupling with other power- and water-generation 
equipment must be considered now.77 Manufacture will also 
bring challenges. Scaling laboratory experiments up to full-
size systems capable of producing hundreds of thousands of 
watts of power and thousands of gallons of water will likely 
be problematic.78 Mass manufacturing nanomembranes will 
also chart new territory. Of course, manufacturing puzzles 
are solvable if the physics are possible, but they may drive 
costs, size, or weight of the final product.

The final technological area is military suitability. Like 
any biological system, microbes are fragile. On the posi-
tive side, they can thrive in a broad range of environments 
and can adapt to any niche over time.79 They exist in per-
manently frozen lakes (though water flow stops in frozen 
conditions) and in high-temperature sea vents.80 On the 
negative side, living organisms may not have a shelf life and 
may require lead time to form productive populations.8� If 
addressed early in R&D, a procedure could be developed 
for “seed” generation. For example, inoculums could be in-
troduced and begin colonizing the system en route to an 
expeditionary location. Simple work-arounds exist for the 
first few hours or days until the systems are fully opera-
tional and stable. For more details about the technological 
challenges, see appendix B.

Key Social Nodes. The social aspect is the second 
branch that leaders must consider to advance the MFC 
concept. The three key social nodes are operational trans-
parency, resistance to change, and cost.

The first key social node is operational transparency. 
In facilities, technologies that do not require occupants to 
change their lifestyle or business model will be most suc-
cessful, so MFCs designed to be compatible with today’s 
facilities are more likely to see widespread adoption.82 For 
example, it would be easier to design technologies that cap-
ture household organic waste than to train a whole society 
to feed sorted kitchen scraps into an MFC in the basement. 
Others might resist the change if they knew their toilet wa-
ter was cleaned and recycled to their kitchen sink. Of course 
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that is what happens today, but it is at a distant treatment 
plant rather than in the crawl space at home.

Operational transparency is related to the second key 
node—social willingness to change. In The End of Oil, Paul 
Roberts asserts that the success in hybrid vehicle sales 
might be an indicator of social readiness to accept revo-
lutionary technologies that decrease dependence on tradi-
tional energy sources.83 But social trends related to automo-
biles do not translate into a desire for change in American 
homes and businesses. Among other reasons, Americans 
change vehicles more frequently than homes.84

Second, modifying facilities built to last �00 years or 
more is different from changing features and infrastructure 
for vehicles that are replaced at least an order of magnitude 
more frequently. Roberts’s book captures this idea:

If the auto industry is ripe for an efficiency revolution, it’s not 
clear whether that revolution can spread to other sectors. . . . 
Industrial nations currently waste an extraordinary amount 
of energy through poorly designed homes, office buildings, 
and factories—all of which could be redesigned for dramatic 
energy savings. Yet the daunting and hugely expensive task 
of reengineering such large pieces of infrastructure will re-
quire more than the kind of snappy ad campaign that has 
worked for hybrid cars.85

Beyond operational transparency and social willingness 
to change, MFCs will not see widespread adoption unless 
the advantages outweigh the costs. Even if two concepts 
provide the same service for the same cost, human habit will 
choose the old over the new. Slow adoption of photovoltaics 
is an example of consumers deciding that advantages do 
not yet outweigh costs.86 Yet a deliberate or subconscious 
cost-benefit analysis is influenced by politics. For instance, 
government regulations implementing child-restraint seats 
and fire alarms changed the cost-benefit analysis because 
breaking the law is now a cost.87 The same could become true 
for MFCs if policies on security, energy, or water change.

While social inertia is daunting, change is always possible. 
This change might be even easier in the civilian sector than 
within the bureaucracy of government. The question is whether 
incentives are needed to change the cost-benefit equation to 
bring the idea to reality in the desired time frame.
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Key Industrial Nodes. The third branch essential to ad-
vancing the MFC concept is industry. Many industrial factors 
could affect MFC adoption and widespread use. This analysis 
considers two main industries: construction and utility. The 
construction industry, which accounts for 20 percent of the 
American economy, does not embrace innovation.88 The United 
States Green Building Council (USGBC) observes that “the 
building industry is characterized by relatively slow rates of in-
novation due to its size, diversity, fragmentation, and low invest-
ments in research.”89 In Megamistakes, technological change 
expert Schnaars suggests that a precedent for lack of innova-
tion may mean “leaders are napping.”90 This reflects a shortfall 
in government interest, investment, and incentive along with 
century-long facility life spans.9� The utility industry may show 
similar resistance to adopting new sustainable technologies. 
Infrastructure such as high-voltage transmission lines, buried 
power lines, waterlines, and sewage pipes are costly invest-
ments that utility companies will not abandon quickly; how-
ever, the right incentives could allow innovative companies and 
municipalities to gracefully bridge a transition that could last 
as long as half a century. With the right leaders, R&D invest-
ment, and incentives, new technologies will be adopted. 

Key Political Nodes. The final branch of the relevance 
tree to be analyzed is the political branch. Government 
investment, regulations, standards, taxes, and subsidies 
could all impact MFC success either positively or negatively. 
In fact, politicians wield the most power in shaping social 
and industrial demand for this capability. They even hold 
power over technology development since most academic 
R&D is funded through the government. If USAF leaders 
want MFCs for the future, the political machine must be 
a primary point of engagement. Specific recommendations 
follow in the conclusion.

Microbial Fuel Cell Key Capabilities and Challenges

The application relevance tree and the key-node analysis 
of the MFC relevance tree provided the framework to inves-
tigate MFCs systematically. Throughout this research, ca-
pabilities and challenges of MFCs emerged. Some key MFC 
capabilities and challenges from a USAF perspective are 
shown in appendix D.



20

Basic Cost Analysis

MFC capabilities and limitations are clear, but will it cost 
too much to replace, build, operate, and maintain MFC fa-
cilities? No! Appendix E makes some estimates for a �,�00-
person base. This section investigates how operational cost 
savings would quickly pay for capital investments, briefly 
explores maintenance and operations requirements, and 
finally, highlights a few benefits that are difficult to trans-
late into dollars.

Operations costs would quickly pay for capital invest-
ments. According to this research’s calculations, organic 
waste has the potential to provide up to 25 percent of the 
power at an expeditionary base. While it is still uncertain 
how much of this potential energy MFCs could capture 
(alone or in combination with other technologies), scientists 
are optimistic that the technology would be much more ef-
ficient than combustion engines that peak at about 50 per-
cent efficiency.92 If MFCs and complementary technologies 
could capture 90 percent of the potential energy available 
(energy efficiencies have already been recorded at 65 per-
cent and electron capture efficiencies at 96 percent), they 
could replace one of the four MEP-�2 generators during a 
�,�00-person deployment.93 This will save $69,000 per day 
in fuel and fuel delivery costs at a single 1,100-person 
location (see appendix E for details). Translated into major 
theater operations, during a �50,000-person deployment, 
MFCs could save as much as $50 million each day. The 
capital costs of an MFC (even if double the cost of today’s 
generators) would quickly be recouped because of the re-
duced fuel requirements.

As a first step, if only the shower and latrine units be-
came self-contained (power for lights, hot water, and water 
pump) using their own black water and gray water, the USAF 
would still save $2,500 per day at a single �,�00-person 
base. On top of these fuel cost benefits, the USAF would be 
able to capture and recycle �5,000 gallons of water each 
day at a �,�00-person installation. Even if MFCs cannot 
turn 90 percent of the potential energy of organic waste into 
energy, and even if significant R&D investments and capital 
costs are required, it is clear that the USAF would benefit 
from reduced costs and increased capabilities.
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There would also be less need for maintenance. Microbial 
fuel cells do not have moving parts like gas-fired generators. 
Maintenance requirements would be similar to today’s sew-
age treatment plants. Primary maintenance tasks include 
filter cleaning and periodic electrode replacement. Pumping 
sewage from expeditionary latrines and transporting it to 
the sewage treatment location can be eliminated, cutting 
maintenance hours, reducing truck traffic and inspections 
at base entries, and improving quality of life for both resi-
dents and craftsmen. Furthermore, personnel will not have 
to maintain fuel levels in storage bladders or bury as much 
infrastructure. Overall, maintenance requirements will be 
similar to or less than existing systems.

Beyond the cost savings, decision makers must also ac-
count for other benefits not reflected in this basic cost es-
timate. Because of the reduced airlift requirements for fuel 
and water, some mobility aircraft could be freed for other 
missions. Additionally, ground LOCs would become less 
burdened, minimizing improvised explosive device risk to 
personnel, equipment, and supplies. Similar benefits in re-
duced shipping requirements would ease the demand on sea 
LOC throughput as well. Although reduced LOC demand 
from a risk perspective is not quantitatively calculated here, 
the proposal to save lives and assets by reducing fuel and 
water demands during combat has merit.

This systems analysis quantified MFC capability and iden-
tified major obstacles in bringing MFC technology online. 
After building a relevance tree as an analysis framework, 
key technological, social, industrial, and political nodes 
emerged. Understanding these key issues resulted in con-
clusions about capabilities and limitations. After quantifying 
potential capabilities and limitations, a basic cost analysis 
revealed that MFCs could yield savings of up to $50 million 
per day in operating costs for a major deployment.

Conclusions

This research began by asking if the USAF should invest 
in MFCs. To answer this question, this research explored 
“who cares,” explained the technical aspects of MFCs, and 
used relevance tree methodology to analyze capabilities, 



22

limitations, obstacles, and costs. With this analysis, the 
conclusion emerges: yes, the USAF should invest in MFC 
R&D, but investment alone is insufficient. This posture is 
substantiated by the following discussion of MFCs for self-
contained facilities along with suggestions for strategy and 
future research.

Microbial Fuel Cells: The Grail for Green,  
Self-Contained Facilities?

MFCs hold great promise to meet future waste-disposal, 
water, and power requirements with significant cost sav-
ings, but they are a component required for success—not 
a panacea for all self-contained facility needs. MFCs are 
primarily a wastewater treatment capability and will likely 
meet �00 percent of that requirement. The fundamental 
capability that distinguishes MFCs from other sustainable 
facilities technologies is their ability to process sewage, 
kitchen scraps, and storm water for sanitary waste disposal 
and to restore water to potable quality. It is a bonus that 
MFCs also provide potable water and power as chemical 
reaction by-products.

While MFCs are likely to meet �00 percent of the waste 
disposal requirements, expecting MFCs to meet �00 per-
cent of facility power and water requirements is unrealis-
tic.94 For power and water, MFCs must be coupled with de-
mand reduction through both technology and conservation 
efforts. Roberts predicts that “no matter what energy tech-
nologies we end up using twenty or thirty years from now, 
we still won’t have enough energy for everyone if we haven’t 
found ways to use much less of it,” and believes that “ef-
ficiency remains our greatest hope.”95 Even with increased 
efficiencies, MFC power densities will not meet forecasted 
power demand alone. MFCs may only meet 25 percent of 
full power requirements, so MFC technology should be 
coupled with other sustainable power sources such as hy-
drogen fuel cells, solar power, wind, and thermal technolo-
gies.96 These are promising energy sources with capability 
gaps that MFCs could fill (for example, to produce hydrogen 
at night, on cloudy days, on low-wind days, or in places 
where thermal technologies are not viable).
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For water supplies, MFCs can capture and recycle water, 
but the by-products of the chemical reaction will not pro-
duce large quantities of water itself. The main water benefit 
of MFCs is the ability to recapture the 70 percent of water 
used that now moves into the sewage treatment process 
and evaporates (in an expeditionary setting).97 The stream 
of clean water produced at the anode combined with the 
trickle of clean water as a by-product of the reaction at the 
cathode will only partially meet water demand.98 

MFCs are not a silver bullet, but they will fill gaps in existing 
sustainable technologies, and they provide power, water, and 
waste treatment while enabling self-contained facilities. 

Strategy Recommendations and Future Research

Though MFCs cannot meet �00 percent of power and wa-
ter requirements, they can augment production and dis-
pose of all wastes while filling gaps in other power and wa-
ter technologies. In light of the relevance tree analysis, this 
section recommends strategy and future research to address 
technological, social, industrial, political, and business-case 
considerations.

Technological Considerations. First, leaders must de-
cide to invest in facility research and development, includ-
ing MFCs. The USGBC points out that “the design, con-
struction, and operation of buildings account for 20 percent 
of US economic activity and more than 40 percent of energy 
used . . . yet far less than � percent of the federal research 
budget is allocated to buildings.”99 

Next, the USAF must develop a road map for MFC technol-
ogy to vector the R&D funds. The road map should include 
basic science milestones, but it should also outline envi-
sioned systems, manufacturing techniques, and schemes 
for components working together up to the level of complete 
self-contained facilities. For example, if a target is expedi-
tionary self-contained facilities, all component technologies 
such as MFCs, solar power, rainwater collection, and self-
monitoring/self-maintaining systems must be identified, 
investigated, integrated, and set as deliverables. Deliverable 
interim milestones, such as an expeditionary self-contained 
shower and latrine facility by 20�5, must be incorporated 
into the plan as well. Often systems engineering and manu-
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facturing challenges are as difficult as basic science. Early 
conceptualization could identify the toughest obstacles that 
could be addressed in parallel with the basic science devel-
opment to optimize research time and dollars. Appendix B 
is a starting point for science, systems integration, manu-
facturing, and military suitability challenges that should be 
addressed in the road map. 

In addition to the road map, the technology investment 
strategy should be collaborative. Collaboration must first 
begin with USAF and DOD pursuit of academic partners, 
but it should ultimately become a cross-agency plan since 
this technology has the potential to contribute to areas of 
interest beyond the DOD (see fig. A.�). The DOD has initi-
ated several notable energy projects, but no unified, con-
certed effort yet exists across the services.�00 A starting list 
of contacts for potential USAF, DOD, and academic collabo-
rators is shown in table A.�.

The technology strategy and future research recommen-
dations are (�) USAF R&D investment in MFC technologies, 
(2) development of a road map to spend those investment 
dollars, and (3) a collaborative technology approach. 

Social Considerations. The social barriers to wide-
spread use of MFCs are perhaps the most vexing challenges 
from the perspective of a USAF engineer.�0� Yet the impedi-
ments must be addressed because “enabling the rapid ad-
aptation of new energy technologies to civilian use is re-
quired for the Nation’s long-term physical and economic 
security.”�02 Scientists and engineers can solve the tech-
nology problem, but if society does not adopt the technol-
ogy, costs will increase, homeland security benefits will not 
be realized, and synergies between expeditionary and per-
manent facilities will be lost. Social obstacles must be the 
subject of further investigation. The USAF must hire out-
side expertise (like psychologists, consumer and marketing 
experts, or futurists), or rely on collaborative partners like 
the DOE, to gauge the magnitude of social challenges that 
might occur, possible solutions, and their impact on na-
tional security goals.

Industrial Considerations. This research identified 
many industrial challenges in bringing MFCs to fruition; 
however, with a deliberate plan, these obstacles are sur-
mountable. Incentives are powerful change agents, and 
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specific recommendations should be the focus of future re-
search. A good starting point for this research might be les-
sons learned from ethanol infrastructure.�03

Political Considerations. First, policy makers must de-
liberately decide if a free market can effectively shape the 
future energy and water economy or if government inter-
vention is necessary to protect the economy and ultimately 
national security. In The End of Oil, Roberts argues that 
a free-market economy could bring about a new energy 
economy if energy prices gradually increase, but he worries 
that world events could lead to catastrophic spikes in oil 
prices.�04 He contends that “improving efficiency . . . must 
begin in the political sphere with a new consensus by policy 
makers that the energy system must change in fundamental 
ways—and, above all, real leadership [is needed] to ensure 
that such change actually happens.”�05 One of the primary 
functions of government is to provide collective security for 
the nation. Risks in today’s energy volatility suggest that 
government intervention may be necessary. Ultimately, policy 
makers must decide if, when, and how to intervene, but the 
important thing is that they make an intentional decision to 
intervene or not intervene, rather than simply falling back 
to a default position resulting from indecision.

Second, policies must not dissuade military decision 
makers from doing the right thing when it comes to en-
ergy and water. Wing commanders, for example, see new 
technologies as risks without rewards since operational 
savings are not realized at the installation level. Further-
more, incentives such as tax credits or renewable energy 
credits penalize the government since no benefits can be 
gained. In his article “Energy and Force Transformation,” 
Scott Buchanan advocates that “the Services, combatant 
commanders, research laboratories, and other major DOD 
organizations should be allowed to keep a portion of the 
savings from innovative initiatives in material, procedures, 
and doctrine that significantly enhance energy efficiency.”�06 
The USAF should engage its attorneys and policy makers 
to find creative incentives that reward decision makers for 
taking sensible risks to implement MFC technologies.

Beyond these two primary political recommendations, fu-
ture research should investigate policies that could jeopar-
dize or enhance bringing MFCs to fruition. Specific areas to 
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address are investment policies and levels, incentives, regu-
lations, standards, taxes, and subsidies. Future research 
should consider how decisions in these areas directly and 
indirectly affect the social, industrial, technological, and 
government realms.

Business Case. No investment strategy or policy deci-
sion is complete without a supporting business case. This 
research included only a cursory cost analysis focusing on 
a �,�00-person expeditionary base, which clearly showed 
the advantages of MFCs for remote and expeditionary fa-
cilities. Future research should expand this business case, 
especially for permanent facilities that would require more 
extensive investments to update building systems to ac-
commodate MFC technologies and would have less organic 
waste (as a percentage of power required) on hand from 
which to generate power.

Summary

National security planners cannot know the exact threats 
for 2030, but the environment could be characterized by 
conventional, major theater threats; terrorist threats; small 
wars, insurgencies, and humanitarian disasters; or water 
and energy resource shortages. Which of these threats domi-
nate the 2030 environment is irrelevant; they all require the 
capabilities that MFCs provide—distributed, secure, and 
sustainable power, water, and waste/wastewater treatment. 
MFCs are a guaranteed investment for the future. They are 
a flexible technology capable of enabling effects across the 
entire range of military operations and, as a bonus, they will 
also quickly pay for themselves.

The USAF should invest in MFC research because this 
technology allows development of self-contained facilities 
decoupled from the infrastructure network, a key capability 
for national security in the 2030 environment. The USAF 
must develop facility energy, water, and wastewater capa-
bilities to ensure future combat effectiveness of air, space, 
and cyberspace forces that rely heavily upon facilities. 
Leaders cannot assume that these enablers will be avail-
able in the future; they must plan for them. Nevertheless, 
an MFC investment strategy must include more than R&D 
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funds. The USAF must pursue a collaborative approach 
that addresses not only the technological barriers at the 
scientific and systems integration level but also the key 
social, industrial, and political hurdles. Our national security 
depends on it!

Notes

(All notes appear in shortened form. For full details, see the appropriate 
entry in the bibliography.)
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Appendix A

Applications and  
Collaboration Partners

Microbial fuel cells (MFC) have many potential applica-
tions within the Department of Defense (DOD) and beyond. 
Figure A.1 lists some applications and the agencies that are 
potential collaboration partners.

Because of the broad applicability of MFCs, collabora-
tion could provide synergy in bringing MFC capabilities to 
fruition. This research identified some of the main players 
within the DOD and academia. Table A.1 serves as a start-
ing point to identify potential collaboration partners. The 
Web site http://www.microbialfuelcell.org also provides an 
overview of research groups currently investigating MFCs.
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Table A.1. Potential collaboration partners

Organization Contact Research Interest

AF Advanced 
Power Technology 
Office (APTO)

Mike Mead  
478-222-1827 (DSN 472) 
mike.mead@robins.af.mil

Identify, assess, 
transition, and integrate 
advanced power and 
alternative-energy and 
fuel technologies into 
the USAF’s inventory 
of ground vehicles, 
support equipment, base 
expeditionary airfield 
resources (BEAR), and 
fuel-cell equipment/ 
applications

Air Force 
Civil Engineer 
Support Agency 
(AFCESA)/CC

Col Richard Fryer 
850-283-6101 (DSN 523) 
richard.fryer@tyndall 
.af.mil 

Commander, AFCESA

AFCESA/CEN Maj Milt Addison 
850-283-6139 (DSN 523) 
milton.addison@tyndall 
.af.mil

Engineering, management, 
and legal services to 
support energy and 
water usage reduction 
initiatives, renewable 
development, commodity 
acquisition, capital program 
management, and utility 
privatization

AFCESA/CEX Mr. Rod Fisher 
850-283-6127 (DSN 523) 
rod.fisher.ctr@tyndall.af.mil

Expeditionary equipment 
requirements and 
development; looking at 
future expeditionary latrine 
already

AF Office 
of Scientific 
Research 
(AFOSR)

Maj Jennifer Gresham 
703-696-7787 (DSN 426) 
jennifer.gresham@afosr 
.af.mil

Enzyme/protein/microbial 
fuel cells for air and space 
vehicle applications

AF Research 
Laboratory 
(AFRL)/RXQ

Reza Salavani 
Dr. Aly Shaaban 
850-283-3702 (DSN 523) 
aly.shaaban@tyndall.af.mil 

Future deployed energy 
and utility systems

AFRL/RXQL Dr. Glenn Johnson 
850-283-6223 (DSN 523) 
glenn.johnson@tyndall 
.af.mil

Biological (microbial and 
enzyme) fuel cells



Organization Contact Research Interest

Defense Advanced 
Research Projects 
Agency (DARPA)

Ms. Sharon Beermann-Curtin 
571-218-4935 
sharon.beermann-curtin 
@darpa.mil 

Mobile integrated 
sustainable energy 
recovery, integrated high- 
energy dense capacitors, 
micropower sources, 
nanocomposite optical 
ceramic, robust portable 
power

US Army Corps of 
Engineers (COE) 
Communications 
Electronics Research, 
Development and 
Engineering Center 
(CERDEC)

Pavel Fomin 
703-704-1027 (DSN 654) 
armypower@conus 
.army.mil 

Soldier and  
man-portable  
fuel cells

US Army COE 
Construction 
Engineering 
Research 
Laboratory (CERL)/
Engineer Research 
and Development 
Center (ERDC)

Franklin H. Holcomb 
217-373-5864 
franklin.h.holcomb@erdc 
.usace.army.mil 

Wastewater treatment 
plant with MFC for 
hydrogen infrastructure

US Army Research 
Laboratory

Dr. Kurt Preston 
919-549-4234 (DSN 832) 
kurt.preston@us.army.mil

Environmental 
sciences, 
US Army base camps

US Army Research 
Laboratory

Charles W. Walker 
Alyssa L. Walker 
301-394-0306

Biological fuel cells, 
sensors and electronic 
devices, soldier-
portable power

US Naval Research 
Laboratory (NRL)

Brad Ringeisen 
Justin Biffinger 
202-767-0719 
bradley.ringeisen@nrl.navy.mil 
justin.biffinger@nrl.navy.mil

Biofilms, 
anoporousmembranes, 
microbe adaptation

Arizona State 
University

Dr. Bruce Rittmann 
480-727-0434 
rittmann@asu.edu

Microbiology, biofilms 
renewable resources

Table A.1. Potential collaboration partners (continued)
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Organization Contact Research Interest

Pennsylvania State 
University

Dr. Bruce Logan 
814-863-7908 
blogan@psu.edu

Technologies for a 
sustainable water 
infrastructure, energy 
production from waste

Florida International 
University (FIU)

Applied Research Center 
Jerry Miller, Colonel, 
Retired 
305-348-6623 
jerry.miller@arc.fiu.edu

Self-contained facilities, 
Western Hemisphere 
Information Exchange 
(WHIX) Program—
includes FIU, US 
Southern Command 
(USSOCOM), US Army

University of 
Massachusetts, 
Amherst

Derek Lovley 
413-545-9651 
dlovley@microbio 
.umass.edu

MFCs, microbiology, 
microbial nanowires, 
biofilms

University of  
Minnesota

Dr. Daniel R. Bond 
612-624-8619 
dbond@umn.edu 

MFCs, microbiology, 
biofilms

University of 
Queensland, Brisbane 
(Australia)

Dr. Korneel Rabaey 
k.rabaey@uq.edu.au

Wastewater 
management, industrial 
waste streams, 
microbiology

University of Southern 
California  
Multi-University 
Research Initiative 

Dr. Kenneth Nealson 
213-821-2271 
knealson@usc.edu 
Yuri Gorby 
(J. Craig Venter Institute) 
ygorby@venterinstitute.org 
Steven Finkel, Florian
   Mansfeld 
Andreas Lüttge (Rice Univ) 
Byung Hong Kim (Gwangju   
    Institute of Science and 
    Technology, Korea) 
Bruce Logan (Penn State) 
Shana Rapoport

Microbiology, 
chemistry, 
electrochemistry, 
engineering, modeling

Washington University, 
St. Louis

Dr. Lars Angenent 
314-935-5663 
angenent@seas.wustl.edu

MFCs to dispose of 
waste in the food and 
agriculture industries

Table A.1. Potential collaboration partners (continued)
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Appendix C

Competing and Complementary 
Microbial Fuel Cell Technologies 

Biofuels and Biomass

Microbial fuel cells (MFC) are not fed by biofuels or biomass. 
MFCs can digest organic materials, some of which could be 
called biomass, but the primary purpose of an MFC as envi-
sioned today is to treat wastewater and capture electrons as 
microbes digest the carbon-rich fuels. While tailored MFCs 
could probably digest harvested biomass, they are meant to 
dispose of organic waste rather than create demand for plant 
life to be used as fuels. In addition, unlike biofuels, MFCs 
do not convert biological material into synthetic fuels or gas 
to be used to fuel other systems such as vehicles. MFCs di-
rectly convert nuisance waste into useable power. 

Hydrogen Fuel Cells

MFCs are not the same as hydrogen fuel cells, though 
the technologies have parallel components. The basic setup 
of hydrogen fuel cells and MFCs is the same, but the fuels 
and catalysts are different. Hydrogen fuel cells must have 
hydrogen fuel, which is costly to produce and uses more 
energy to create the fuel than the fuel cell can output. In hy-
drogen fuel cells, platinum (which is also expensive), rather 
than microbes, serves as a catalyst to split the molecule 
and harvest the electrons. Both technologies consume fuel, 
which differentiates them from batteries, but the consum-
able fuels and the reaction catalysts are different.

Protein-Based (or Enzyme-Based) Fuel Cells

MFCs are not protein- or enzyme-based fuel cells. Both 
are biological fuel cells, but enzyme-based fuel cells use 
purified enzymes from reduction and oxidation reactions, 
rather than complete microbial cells, as the catalysts. Both 
technologies have characteristics that allow them to fill 
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different niches. The microbial catalysts in the MFC could 
theoretically be sustained forever as they regenerate them-
selves. Different organisms could also be combined to al-
low fuel flexibility, which would be highly valued for ground 
applications. Unlike microbes, enzymes could theoretically 
allow more complete electron harvesting since living mi-
crobes consume some of the chemical energy to survive and 
reproduce. Enzyme fuel cells, therefore, could potentially 
be a more dense power source more suitable to air and 
space vehicle applications.1 

Solar Power

MFCs are not solar power. They do not use photovoltaics, 
space-based power vectoring, or solar thermal energy. MFCs 
are a good candidate, however, to couple with solar power to 
fill existing limitations. The USAF already has prototype ex-
peditionary, flexible facilities with integrated photovoltaics.2

Wind Power

MFCs are obviously not wind power. MFCs, however, 
are a good candidate to couple with wind power to fill ex-
isting limitations. 

Desalination Plants

MFCs are not desalination plants, and they do not re-
place the reverse osmosis water purification unit (ROWPU) 
that the USAF currently uses in expeditionary settings. 
MFCs can operate in salt water to produce energy (often 
called sediment batteries), but they will not convert salt-
water to potable water because the microbes metabolize 
carbon-based compounds, not salt.3

Notes

1. These ideas concerning differences and potential applications of the 
different types of biological fuels cells came from Maj Jennifer Gresham 
(Air Force Office of Scientific Research), phone interview with the author, 
16 November 2007.

2. Keith, “BEAR Base Solar Power System.” 
3. Reimers et al., “Microbial Fuel Cell Energy.” 
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Appendix D

Key Microbial Fuel Cell  
Capabilities and Challenges
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	 Capabilities	 Challenges

Within 48 hours, enables secure, 
basic ground services (water, 
electricity, and waste disposal) apart 
from the vulnerable infrastructure 
network, at both permanent and 
expeditionary locations, in a clean and 
efficient manner

Eliminates need for fuel and water to 
flow through lines of communication 
(reduces risks/vulnerabilities/costs)

Sanitarily disposes of 100% of 
sewage and other carbon-rich waste

Reduces water requirement by at 
least 70%

Generates 600+ watts of power per 
person—25% of an expeditionary 
base power requirement

For a 150,000-person deployment 
saves

 •  2 million gallons/day of water
 •  180,000 gallons/day of fuel 
 •  $50 million/day in fuel operating 

costs (fuel price plus transport 
cost)

Prevents natural resource conflicts

Generates power with no heat/noise

Sufficient waste volumes

Microbe vulnerability

Social acceptance

Reluctance to invest in facility 
technologies

Resistance from utility and 
construction industry

Timeline to convert homeland 
infrastructure

Must be coupled with  
demand-reducing technologies 
(energy and water)





Appendix E

Basic Cost Analysis

This is a basic cost analysis for a 1,100-person expedi-
tionary base and includes potential savings in both electri-
cal power and water with implementation of efficient micro-
bial fuel cell (MFC) systems.

Electrical Power

Table E.1. Organic power sources at 1,100-person expeditionary base

Mobile Expeditionary Power (MEP)-12A Generator1

Rated capacity: 750 kW 
Actual output capacity: 625 kW
Fuel consumption rate: 1,320 gallons (gal) per day 
(568 watts [W]/gal/day)
Cost: $165,000
Weight: 25,000 pounds

Expeditionary Base Power Planning Factor 

2.7 kW per person2 (Four MEP-12s/1,100 people)

Impact

MFCs, therefore, could supply about 25 percent of the 
required base power and replace one of the four MEP-12A 
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Potential Power Source MMBtu’sa/day b ~ kWc

Black/Gray Water 2+ 30

Food Waste 4+ 50

Paper/Cardboard 40 480

Wood 10 120

Total 56 680

amillion British thermal units
bWaste characterizations for “00-Staff, 50-Hospital Bed Bare Bases” were provided in tables 
labeled “Battelle Report” and “ACC/WMO Report” from Johnson and Diltz in discussion with 
author. 
ckilowatts
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generators at a 1,100-person location if 90 percent of the 
waste’s potential energy could be captured. 

Fuel Costs (per gallon)

Standard cost: $3.043

Delivered cost via USAF tanker: $52.504

Delivered cost (conservative) to remote operating loca-
tion: $3005

Amount Saved Daily by Substituting an MFC for One MEP-12A

Standard cost: $3.04/gal x 1,320 gal/day = $4,000 
($4K)/day

Cost for fuel delivered via USAF: $52.50 x 1,320 gal/ 
day = $69K/day

Cost for fuel delivered to a remote operating location: 
$300 x 1,320 gal/day = $400K/day

Cost savings for 150,000-person deployment: $50 mil-
lion/day

Amount Saved Daily by Substituting Gray/Black Water Only           
for 30 kW of Power

Gallons of fuel saved: 30 kW ÷ 568 W/gal/day = 50 
gal/day

Standard cost: $3.04/gal x 50 gal/day = $150/day
Cost for fuel delivered via USAF: $52.50 x 50 gal/day = 

$2.5K/day
Cost for fuel delivered to a remote operating location: 

$300 x 50 gal/day = $15K/day

Water

Planning Factor

Water-use planning factor (expeditionary): 20 gal/ 
person/day6

Water-use planning factor (permanent): 50 gal/person/
day7

Wastewater planning factor: 14 gal/person/day8 
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Impact

The typical expeditionary plan calls for wastewater dis-
posal via evaporation lagoons, so 14 gal/person/day is lost 
via evaporation that could be reclaimed with MFCs.

Savings

Water savings percentage: 14 gal/person/day ÷ 20 gal/
person/day = 70% 

Total water saved/day for a 1,100 person base: 14 gal/
person/day x 1,100 people = 15K gal/day

Literature Estimates

Dr. Bruce Logan (see table A.1) estimates that “this sys-
tem would produce 51 kilowatts on the waste from 100,000 
people.”9 Logan’s calculation only includes gray water and 
black water, and he predicts 0.5 W/person.

Notes

1. Air Force Handbook 10-222, vol. 10, Guide to Harvest Falcon; and 
vol. 2, Guide to Bare Base Assets, 34.

2. Ibid., vol. 2, Guide to Bare Base Assets,  75. 
3. Grant, “Surging Oil Prices.” 
4. The 2001 delivered fuel cost was “$17.50 per gallon for USAF world-

wide tanker-delivered fuel.” Since the standard cost of fuel tripled from 2001 
to 2008, $17.50 x 3 = $52.50 is the 2008 delivered cost estimate. Defense 
Science Board Task Force on Improving Fuel Efficiency of Weapons Plat-
forms, More Capable Warfighting, ES-3, 20. For additional validation of this 
estimate, see Col Elwood Amidon, briefing, subject: Needed Now, slide 22.

5. In 2001, the cost of delivered fuel was “hundreds of dollars per gal-
lon for Army forces deep into the battlespace.” Defense Science Board Task 
Force on Improving Fuel Efficiency of Weapons Platforms, More Capable 
Warfighting, ES-3. Other sources suggest this number could be as high as 
$600 per gallon. See Dimotakis, Grober, and Lewis, Reducing DoD Fossil-
Fuel Dependence, 20.

6. Air Force Pamphlet 10-219, vol. 5, Bare Base Conceptual Planning 
Guide, 87.

7. Ibid., 86.
8. Ibid., 115.
9. Biever, “Plugging into the Power of Sewage.” 
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Appendix G

Tech Sheet

Microbial Fuel Cells

System Description: Microbial fuel cells (MFC) convert 
wastewater and organic material to clean water and elec-
tricity. 

MFCs are fed by sewage, gray water (shower and laundry 
water), stormwater, industrial waste, kitchen scraps, paper, 
wood, or any other type of organic matter. Through anaero-
bic metabolism at the anode, microbes restore wastewater 
to a recyclable quality and produce electrons that can be 
captured for power. The by-product of the reaction is poten-
tially potable-quality water. 

MFCs operate on similar principles to hydrogen fuel cells, 
but neither hydrogen nor a sealed cathode in an oxygen-
pure environment is required. Power is not the only benefit; 
MFCs also sanitarily dispose of organic waste and produce 
clean water.

Possible Concept of Operations: MFCs should be coupled 
with other technologies to meet 100 percent of the power, 
water, wastewater, and solid waste disposal requirements 
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autonomously and covertly—without sustainment support 
from lines of communications (LOC) or an infrastructure 
network.

• Phases 0–V (Shape, Deter, Seize Initiative, Dominate, 
Stabilize, Enable Civil Authority)
° Establish maneuverable bases that are light, trans-

portable, and modular requiring no heavy equip-
ment to build, no utilities infrastructure to support, 
and no fuels to sustain

° Generate power without a heat signature or noise 
(flight-line operations or facility power)

• Phases 0–I (Shape, Deter)
° Prevent conflicts sparked by water and energy re-

source demand
° National Security Strategy (NSS): “Expand the circle of 

development by opening societies and building the in-
frastructure of democracy”1

° NSS: “Ignite a new era of global economic growth 
through free markets and free trade” which includes 
“secure, clean energy development”2

• Phases IV–V (Stabilize, Enable Civil Authority)
° Provide water, sanitation, and power post-conflict or 

post–natural disaster
° Provide essential services (remote or urban) without 

major construction or resources
° Quickly gives nascent government legitimacy by pro-

viding for the people’s needs 

• Homeland Defense: Reduce/eliminate risk associated 
with critical nodes of vulnerability in both the physical 
and cyber realms by distributing the infrastructure net-
work (power grid, water, and sewage); threat could be 
from enemy, natural disaster, or resource shortage

Capabilities:

• Within 48 hours enables basic ground services (water, 
electricity, and waste disposal) apart from the vulnerable 
infrastructure network in a clean and efficient manner
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• Eliminates need for fuel and water to flow through LOCs 
(reduces risks/vulnerabilities/costs)

• Sanitarily disposes of 100% of sewage and other carbon-
rich waste

• Reduces water requirement by at least 70%
• Generates 600+ watts of power per person—25% of an 

expeditionary base power requirement 
• For a 150,000-person deployment

° Saves 2 million (2M) gallons/day of water
° Saves 180,000 gallons/day of fuel
° Saves $50M/day in fuel operating costs (fuel price plus 

transport cost)

Notes

1. Bush, National Security Strategy, 31.
2. Ibid., 30.





57

Glossary 

Air and Space 
Operations Center

Also known as the AN/USQ-
163 Falconer Air and Space 
Operations Center (AOC) weapon 
system. The AOC plans, tasks, 
and coordinates execution of 
air and space operations and 
provides centralized control for 
friendly forces.

airpower For brevity, airpower is 
occasionally used alone in this 
text, but it refers to air, space, 
and cyber power. 

black water Wastewater that contains 
biological or solid wastes. 
Examples include water flowing 
from toilet and kitchen drains.

clean energy Energy that does not consume 
limited natural resources or 
produce harmful by-products. 
Renewable energy is a subset of 
clean energy.

craftsmen Air Force civil engineers, assigned 
to the 3EXXX Air Force specialty 
codes, who construct, maintain, 
repair, and operate facilities and 
infrastructure at home stations 
and in deployed environments. 
Currently, craftsmen maintain 
general skills at the home station 
but must also attend annual 
Silver Flag training to be qualified 
on expeditionary-specific assets. 
Similar expeditionary and home-
station assets would eliminate 
much of this training.

fouling Term used to describe microbial 
fuel cell membranes encrusted 
with deposits.
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Future Capabilities 
Game 2007

A USAF far-term focused war 
game.

gray water Wastewater that does not contain 
urine or solid waste. Examples 
include water from showers, 
washing machines, and bathroom 
sinks.

infrastructure nodes Key points in an infrastructure 
network that are essential to 
proper network function. Nodes 
can be in the physical or cyber 
realm. Examples include a 
power plant or the software that 
operates the control system for 
any type of infrastructure.

infrastructure
(or infrastructure 
network)

All components of utility systems 
that bring resources from one 
point to another. Examples might 
include oil pipelines, power 
plants, electrical transmission 
lines, water towers, water mains, 
sewage mains, and sewage 
treatment plants. Institutions 
and facilities, such as schools, 
prisons, and post offices, are not 
included in this definition.

inoculum Microorganisms introduced into a 
suitable growing medium.

line of 
communications

Used in a military sense to 
indicate a main supply route. It 
may include transportation by 
ships, trains, trucks, aircraft, or 
any other mode of travel.

mediator A soluble molecule that actively 
gains and loses electrons.

microbial electrolysis 
cell

A type of microbial fuel cell that 
is more complex than the concept 
discussed in this research. It uses 
a voltage input to drive hydrogen 
production.
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mobile electric power 
(MEP) cell

Describes generators typically 
used in USAF expeditionary 
engineering. Designed to work 
alone or with expeditionary power 
plants. For example, a MEP-12A 
generator provides 750 kW of 3-
phase power.

modular Consisting of small units or 
sections that allow flexible, 
scaleable configurations and 
standardized construction.

Nafion® A chemically stable polymer 
developed by DuPont.

organic wastes Waste products that have high 
carbon contents. Examples 
include wastewater, food scraps, 
agricultural wastes, paper, wood, 
and plastics.

relevance tree Research methodology that 
recursively breaks problem into 
smaller components until enough 
detail is reached to understand 
the fundamental issues 
surrounding a problem. This 
term also refers to the graphical 
diagram that represents this 
process.

renewable energy Energy that comes from sources 
that are naturally replenished. 
Examples include energy captured 
from the sun, wind, or geothermal 
sources. Renewable energy is a 
type of clean energy.

reverse osmosis 
water purification 
unit

USAF expeditionary engineering 
assets that produce up to 600 
gallons of potable water per hour 
from seawater or freshwater.
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self-contained 
facilities

Facilities that do not rely on 
outside infrastructure or lines of 
communications for utilities such 
as water, wastewater, and power.

wastewater Water that has been used. 
Examples include gray water, 
black water, and industrial waste 
streams.
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Abbreviations

ACSC	 Air	Command	and	Staff	College
AOC-WS	 Air	and	Space	Operations
	 Center–Weapon	System
DOD	 Department	of	Defense
DOE	 Department	of	Energy
DOS	 Department	of	State
EU	 European	Union
FG07	 Future	Capabilities	Game	2007
IOP	 instrument	of	power
JP	 joint	publication
LOC	 line	of	communications
MEC	 microbial	electrolysis	cell
MEP	 mobile	electric	power
MFC	 microbial	fuel	cell
NGO	 nongovernmental	organization
NMS	 National	Military	Strategy
NSS	 National	Security	Strategy
QDR	 Quadrennial	Defense	Review
R&D	 research	and	development
SSTR	 stability,	security,	transition,
	 and	reconstruction	
TRL	 technology	readiness	level
USGBC	 United	States	Green	Building	Council
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